

館長だより

山形県産業科学館

令和7年11月2日(日)

発行 館長 加藤智一

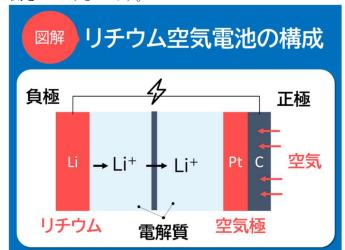
日産が取り組む「リチウム空気電池」

江南タイムズ電子版より

日産は「リチウム空気電池」の研究開発を通じて、電気自動車の航続距離を劇的に伸ばす可能性を追求しています。現在は実験段階ながら、理論上は2500km以上の走行が可能とされ、次世代電池技術の中でも注目を集めています。

電気自動車(EV)の普及において、バッテリー技術はその根幹を成す要素ですが、従来のリチウムイオン電池は、エネルギー密度や安全性の面で限界に近づいており、より高性能な蓄電池の開発が急務となっています。こうした中、日産が取り組む「リチウム空気電池」は、理論上リチウムイオン電池の数倍のエネルギー密度を持つとされ、「究極の蓄電池」とも称される革新技術です。

「リチウム空気電池」は、空気中の酸素を正極活物質として利用し、負極に金属リチウムを用いる構造を持ちます。放電時にはリチウムが酸素と反応して過酸化リチウムを生成し、充電時にはこれが分解されて酸素が放出されます。この反応機構により、電池内部に酸素を保持する必要がなく、構造の軽量化が可能となります。結果として、重量当たりのエネルギー密度は4000Wh/kg以上に達する可能性があり、これは現在のリチウムイオン電池の10倍以上に相当するものです。


日産はこの技術の実用化に向けて、複数の特許を 出願しています。ひとつは、電極層にリチウム酸化 物と触媒、ゲルポリマーを組み合わせることで発熱 と寿命の課題を克服し、外部の空気を遮断する密閉 型構造を採用してエネルギー損失を低減するもので、 もうひとつは、過充電時に発生する酸素ガスの漏出 を防ぐため、電極表面に分岐型高分子コーティング を施す技術です。これにより、内部圧力の上昇を抑 え、バッテリーの安全性と耐久性を高めることが期 待されています。

理論上、「リチウム空気電池」を搭載したEVは、現在の中型車のバッテリーパック(約 480kg)で最大2500km の走行が可能とされ、これは東京から大阪を往復してもなお余裕がある距離であり、充電インフラの制約を大きく緩和する可能性を秘めています。また、バッテリーの軽量化により車両全体の効率が向上し、製造コストの削減にもつながるとされます。ただし、「リチウム空気電池」はまだ実験段階にあ

り、実用化にはいくつかの技術的課題が残されています。特に、サイクル寿命の短さ、空気中の湿度や 汚染物質による性能劣化、反応の安定性などが挙げられます。これらの課題を克服するためには、材料 科学や電極設計、制御技術のさらなる進化が求められています。

日産は 2029 年までに固体電池の商用化を目指していますが、リチウム空気電池はそれをさらに超える次世代技術として位置づけられています。もし実用化に成功すれば、EV のみならず、ドローン、航空機、潜水艦など、あらゆるモビリティ分野に革命をもたらす可能性があります。

このように、日産の「リチウム空気電池開発」は、 単なる技術革新にとどまらず、持続可能な社会の実 現に向けた大きな一歩となるでしょう。より遠くへ、 より軽く、より安全に走る時代。その扉は、確かに 開きつつあるのです。

↑ 橋本総研.COM より引用

が乗ってる軽自動車と、見た目そっくりだな。」と思ったのは私だけでしょうか。